Dynamics of Supermassive Black Holes

Steinn Sigurðsson Penn State

LISA 6: GSFC 06 '06

In the beginning...

- In the local universe we see SMBHs in almost all galaxies with apparently well defined mass function
- We see AGNs at high redshift
- We don't know how SMBHs formed or their mass growth history

Initial Conditions

- Given hierarchical structure formation we can map galaxy merger trees as function of redshift and halo mass
- We do not know if the SMBH mass scaling is local or applies at early times
- Lower end of halo/SMBH mass range is very poorly constrained - LISA sources
- We see binary black holes locally, as loosely bound post-merger wide binaries

NGC 6240

Grand Mergers

- Mergers of galactic halos deposit SMBH in some wide orbit about the "primary"
- For z >> 1 mergers, we do not understand the accretion history well enough to strongly constrain mergers. Can test extreme range of models (cf Volonteri et al, Sesana et al, Micic et al).
- Expect grand design equal mass mergers to be rare (cf MW vs M31!)
- Are there IMBHs? Pop III IMHs? Where?

Micic, Abel & Sigurdsson '06

Messy Problem

• Initial Condition: two black holes - mass function, associated nucleus of stars, accretion disk two galaxies - density, dispersion, shape, morphology, f(E,J,I3), relaxed? Real galaxies are not spherical, merging galaxies particularly not so. "Initial" SMBH orbit? Circular from dyn fric? Undergoing violent relaxation? gas! (stellar mass function, ongoing star

formation)

Dynamical Friction end-point

- From merger scenarios we need three key pieces of information:
 - Mass ratio (distribution) of SMBH
 - "Initial eccentricity" of the orbit at the point the binary becomes hard.
 Circularization? No...!
 - Velocity distribution of inner part of merged galaxy, including isotropy
 - dynamical friction: depends on density gradient and dispersion profile
 - low mass SMBHs in halo or outer disk

Holley-Bockelmann - final stage galaxy with halos. In general some fraction is on centrophilic orbits

Stellar scattering

- Dynamical friction is collective interaction of SMBH with stellar and CDM background
- At late stages SMBH decouples and interacts strongly with individual stars (cf Merritt & Milosavljevic LRR '05)
- Rapid depletion of inner region and "last parsec" problem
- Inelastic scattering (cf Ivanov et al)
- © CDM interaction? Cusp? SIDM??

Is it really a problem

- For near equal mass SMBHs in high end of LISA range, in initially circular orbits in spherical isotropic galaxies
- \odot Not a problem at lower mass or for $M_2 << M_1$
- Eccentricity; gas or third SMBH may matter
- Triaxial or chaotic orbits avert last parsec (cf Berczik et al; Holley-Bockelmann et al)

Eccentric behaviour

- Can we take away J faster than E?
- How.
- Does it help enough to matter?
 - t_{gr} \propto a⁴ f(e) f(e) \sim 2(1-e²)^{7/2}
 - If final e >~ 0.9 then we don't need to harden through the difficult last stages through further encounters. We must resolve this issue and whether it is initial condition dependent or not.
 - harmonics during GW circularisation are at higher f - affects detection prospects if eccentricity persists

Trivia

- de/dt = 0; de/dt < 0; or, de/dt > 0 !
- ø If e=0; then de/dt => 0
- If e=1 and E << 0; then de/dt <= 0
 </pre>
- In practise appears de/dt not a simple interpolation function with a single maximum on the interval
- The interesting physics may come from the hardest parts of the simulations
- Formally <dE/dt*J E*dJ/dt> determines sign of de/dt (cf Vecchio et al '94)

History

- Roos '81: merger possible if galaxies cuspy, sees de/dt > 0 for large initial e
- Mikkola & Valtonen: de/dt depends on initial e and f(v)
- Vecchio et al: de/dt > 0; analytic
 - soft binary e is frozen (e/(de/dt) > a/(da/dt))
 - hard binary runaway e growth
- Fukushige et al: initial e is high
- Phinney & Villumsen: initial small e remains small

Modern age

- Quinlan '96; Quinlan & Hernquist '97:
 - de/dt > 0 for high initial e
 - In Jaffe and Plummer N-body models, e \rightarrow 0 including initially anisotropic models
 - scatterring shows de/dt > 0; N-body shows $e\rightarrow 0$
- Milosavljevic & Merritt '01: $e \rightarrow 0 32k$ Nbody with Jaffe cusp
- Hemsendorf et al '02: e grows numerical effect?
- Aarseth '02: e grows strongly
- Makino et al '04 de/dt inconclusive, find dE/dt depends on N still

Figure 2. Eccentricity evolution of BH binaries. The upper curve is for $N=1.2\times10^5$ and the lower curve for $N=2.4\times10^5$.

More scatterings

Eccentricity

- e(N) for scattering
- Low J scatterers
- High J scatterers
- m/M = 0.001

Note largish jumps in eccentricity especially at high eccentricity

Resonance dominated, small N a concern

Not just what you do, but how you do it...

- If high J* matters, then diffusion vs pinhole filling matters a lot. Shape and f(E,J) matters.
- Violent relaxation, triaxiality, or large scale coarseness are significant
- BH wandering from super-elastic recoil (cf Merritt, Chatterjee et al). Depleted core implies no restoring force and large wandering amplitude.
- What if M_1 not at density maximum?
- Star formation and dissipation?

What causes eccentricity?

- Dynamical friction regime:
 - o central density minima!
 - radial anisotropy (too large unstable?)
 - $\mathbf{o} \mathbf{m}_2 << \mathbf{m}_1$
- 3-body regime: low J stars increase e
 - be how stars re-enter loss cone matters!
 - @ diffusive l-c => e -> 0
 - en large => <de/dt> > 0

Signatures

- Hyper velocity stars (Brown et al) in Milky Way and local group - something interesting in the MW centre?
- Hyper velocity, high metallicity IC* and Planetary Nebulae; different IC* population, metal rich and younger than bulk may be few % and kinematically distinct (Holley-Bockelmann et al '06). Seen already?

Holley-Bockelmann et al '06

When gravity fails

- Gas dynamics: BBR noted that if we wait long enough gas will arrive. cf Armitage & Natarajan 2001, 2005 Escala et al 2003, 2004; Dotti et al eccentricity?
- If AGN for ~ Salpeter time, then Mgas ~ M at radius r < ts(α cs) ~ few pc or less
- BH spin flip (cf Wilson & Colbert '95)
 - spin up during coalescence due to accretion?
 - GPS sources???
- If gas fails, we will merge again. Full blown 3-body SMBH interactions and recoil.
- Residual worry: grav rad recoil ejects BH at coalescence - especially in low mass dwarf galaxies

Signatures

- Post-merger signature (Milosavljevic & Phinney)
- Pre-merger signature Bogdanovic et al Find local population of close SMBHBs before gravitational radiation regime - LISA precursor systems, get census and parameters from synoptic surveys

Second merger

- Core vs Cusp second merger of high mass may fail because of low density left from previous merger
- Also gas poor in general
- But... orbits are not isotropic anymore may get eccentricity growth

Triples

- If SMBHs get stuck may have long lived moderately wide binaries
- See in situ
- Or third SMBH comes along (cf Valtonen et al).
- Ejection through triple interaction
- Kozai pumping of eccentricity
- Most likely for gas poor massive galaxies

Conclusion

- Most scenarios now optimistic about event rate of SMBH mergers
- Mass ratios very uncertain; dependent on gas accretion history - LISA resolves this?
- Binary SMBHs may drive bright QSOs (NB LISA sources IlAGNs not QSOs)
- Lot of secondary issues and astrophysics